54 research outputs found

    Ecophysiological Plasticity and Bacteriome Shift in the Seagrass Halophila stipulacea along a Depth Gradient in the Northern Red Sea

    Get PDF
    Halophila stipulacea is a small tropical seagrass species. It is the dominant seagrass species in the Gulf of Aqaba (GoA; northern Red Sea), where it grows in both shallow and deep environments (1-50 m depth). Native to the Red Sea, Persian Gulf, and Indian Ocean, this species has invaded the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest to understand this species’ capacity to adapt to new conditions, which might be attributed to its ability to thrive in a broad range of ecological niches. In this study, a multidisciplinary approach was used to depict variations in morphology, biochemistry (pigment and phenol content) and epiphytic bacterial communities along a depth gradient (4-28 m) in the GoA. Along this gradient, H. stipulacea increased leaf area and pigment contents (Chlorophyll a and b, total Carotenoids), while total phenol contents were mostly uniform. H. stipulacea displayed a well conserved core bacteriome, as assessed by 454-pyrosequencing of 16S rRNA gene reads amplified from metagenomic DNA. The core bacteriome aboveground (leaves) and belowground (roots and rhizomes), was composed of more than 100 Operational Taxonomic Units (OTUs) representing 63 and 52% of the total community in each plant compartment, respectively, with a high incidence of the classes Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria across all depths. Above and belowground communities were different and showed higher within-depth variability at the intermediate depths (9 and 18 m) than at the edges. Plant parts showed a clear influence in shaping the communities while depth showed a greater influence on the belowground communities. Overall, results highlighted a different ecological status of H. stipulacea at the edges of the gradient (4-28 m), where plants showed not only marked differences in morphology and biochemistry, but also the most distinct associated bacterial consortium. We demonstrated the pivotal role of morphology, biochemistry (pigment and phenol content), and epiphytic bacterial communities in helping plants to cope with environmental and ecological variations. The plant/holobiont capability to persist and adapt to environmental changes probably has an important role in its ecological resilience and invasiveness

    Phenols content and 2-D electrophoresis protein pattern: a promising tool to monitor Posidonia meadows health state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The endemic seagrass <it>Posidonia oceanica </it>(L.) Delile colonizes soft bottoms producing highly productive meadows that play a crucial role in coastal ecosystems dynamics. Human activities and natural events are responsible for a widespread meadows regression; to date the identification of "diagnostic" tools to monitor conservation status is a critical issue. In this study the feasibility of a novel tool to evaluate ecological impacts on <it>Posidonia </it>meadows has been tested. Quantification of a putative stress indicator, <it>i.e</it>. phenols content, has been coupled to 2-D electrophoretic protein analysis of rhizome samples.</p> <p>Results</p> <p>The overall expression pattern from <it>Posidonia </it>rhizome was determined using a preliminary proteomic approach, 437 protein spots were characterized by p<it>I </it>and molecular weight. We found that protein expression differs in samples belonging to sites with high or low phenols: 22 unique protein spots are peculiar of "low phenols" and 27 other spots characterize "high phenols" samples.</p> <p>Conclusion</p> <p><it>Posidonia </it>showed phenols variations within the meadow, that probably reflect the heterogeneity of environmental pressures. In addition, comparison of the 2-D electrophoresis patterns allowed to highlight qualitative protein expression differences in response to these pressures. These differences may account for changes in metabolic/physiological pathways as adaptation to stress. A combined approach, based on phenols content determination and 2-D electrophoresis protein pattern, seems a promising tool to monitor <it>Posidonia </it>meadows health state.</p

    Evidence of another anthropic impact on iguana delicatissima from the lesser Antilles: the presence of antibiotic resistant enterobacteria

    Get PDF
    The improper use of antibiotics by humans may promote the dissemination of resistance in wildlife. The persistence and spread of acquired antibiotic resistance and human-associated bacteria in the environment, while representing a threat to wildlife, can also be exploited as a tool to monitor the extent of human impact, particularly on endangered animal species. Hence, we investigated both the associated enterobacterial species and the presence of acquired resistance traits in the cloacal microbiota of the critically endangered lesser Antillean iguana (Iguana delicatissima), by comparing two separate populations living in similar climatic conditions but exposed to different anthropic pressures. A combination of techniques, including direct plating, DNA sequencing and antimicrobial susceptibility testing allowed us to characterize the dominant enterobacterial populations, the an- tibiotic resistant strains and their profiles. A higher frequency of Escherichia coli was found in the samples from the more anthropized site, where multi-drug resistant strains were also isolated. These results confirm how human-associated bacteria as well as their antibiotic-resistance determinants may be transferred to wildlife, which, in turn, may act as a reservoir of antibiotic resistance

    Tracking Acquired Antibiotic Resistance in Commensal Bacteria of Galápagos Land Iguanas: No Man, No Resistance

    Get PDF
    BACKGROUND: Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. METHODOLOGY/PRINCIPAL FINDINGS: Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i) the abiotic conditions ensure to microbes good survival possibilities in the environment; ii) the animal density and their habits favour microbial circulation between individuals; and iii) there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. CONCLUSIONS/SIGNIFICANCE: Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure

    The Tropical Seagrass Halophila stipulacea: Reviewing What We Know From Its Native and Invasive Habitats, Alongside Identifying Knowledge Gaps

    Get PDF
    Halophila stipulacea is a small tropical seagrass, native to the Red Sea, Persian Gulf, and the Indian Ocean. It invaded the Mediterranean Sea 150 years ago as a Lessepsian migrant, but so far has remained in insulated, small populations across this basin. Surprisingly, in 2002 it was reported in the Caribbean Sea, where within less than two decades it spread to most of the Caribbean Island nations and reaching the South American continent. Unlike its invasion of Mediterranean, in the Caribbean H. stipulacea creates large, continuous populations in many areas. Reports from the Caribbean demonstrated the invasiveness of H. stipulacea by showing that it displaces local Caribbean seagrass species. The motivation for this review comes from the necessity to unify the existing knowledge on several aspects of this species in its native and invasive habitats, identify knowledge gaps and develop a critical strategy to understand its invasive capacity and implement an effective monitoring and conservation plan to mitigate its potential spread outside its native ranges. We systematically reviewed 164 studies related to H. stipulacea to create the "Halophila stipulacea database." This allowed us to evaluate the current biological, ecological, physiological, biochemical, and molecular knowledge of H. stipulacea in its native and invasive ranges. Here we (i) discuss the possible environmental conditions and plant mechanisms involved in its invasiveness, (ii) assess the impact of H. stipulacea on native seagrasses and ecosystem functions in the invaded regions, (iii) predict the ability of this species to invade European and transoceanic coastal waters, (iv) identify knowledge gaps that should be addressed to better understand the biology and ecology of this species both in its native and non-native habitats, which would improve our ability to predict H. stipulacea's potential to expand into new areas in the future. Considering the predicted climate change scenarios and exponential human pressures on coastal areas, we stress the need for coordinated global monitoring and mapping efforts that will record changes in H. stipulacea and its associated communities over time, across its native, invasive and prospective distributional ranges. This will require the involvement of biologists, ecologists, economists, modelers, managers, and local stakeholder

    Designing the Future: An Intelligent System for Zero-Mile Food Production by Upcycling Wastewater

    Get PDF
    The project deals with the environmental problem of water consumption. The aim of this work is to experiment the recycling of dishwasher wastewater through its reuse in growing edible vegetables or ornamental plants; this can also accomplish the valorization of nutrients present in the wastewater. This new process allows to ensure washing functions coupled with vegetables production and to affect users’ environmental awareness and habits, following a user-centered system design approach to understand the users and involve them actively in the system development. The presented work is also aimed to experiment a multidisciplinary approach in order to face environmental problems

    Effect of bacitracin on erythroid differentiation of MEL cells

    Get PDF
    Bacitracin, an antibiotic widely utilized in clinical and veterinary use, was tested on murine erythroleukemia (MEL) cells. Tests were performed to evaluate the capacity of the drug to interfere with erythroid differentiation. Cells were exposed to a single treatment in S phase at sublethal doses of bacitracin. Two responses were found depending on the drug concentration. At higher concentrations (25 μg/ml and 250 ng/ml) a reduction in number of differentiating cells was observed but the kinetics of the process remained unchanged. At lower concentrations (from 2.5 ng/ml to 2.5 fg/ml) a dramatic alteration of the dynamic of differentiation was found. These two responses are related to different activities of the DNA repair mechanisms. Higher doses of bacitracin stimulate repair while lower concentrations are not able to activate repair, as demonstrated by tests with hydroxyurea. The bacitracin-induced damage can be considered a stable genetic and/or epigenetic alteration, as demonstrated by the high frequency of mutant clones isolated from low-dose treated cells. The suitability of MEL cells system in evaluating genotoxicity of drugs for veterinary use is underlined

    Un peu de génétique financière

    Get PDF
    Mallet Jean-Philippe. Un peu de génétique financière. In: Revue d'économie industrielle, vol. 18, 4e trimestre 1981. Genèse et développement de la BIOINDUSTRIE. pp. 293-299
    corecore